

Audio Engineering Society

Conference Paper
Presented at the International Conference on

Immersive and Interactive Audio
2019 March 27–29, York, UK

This paper was peer-reviewed as a complete manuscript for presentation at this conference. This paper is available in the AES
E-Library (http://www.aes.org/e-lib) all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted
without direct permission from the Journal of the Audio Engineering Society.

Interactive Audio Geometry
Simon N Goodwin, Interactive Audio Tech Consultant, Warwick, UK

SimonNGoodwin13 @ gmail.com

ABSTRACT

One of the tough but rewarding challenges of interactive audio synthesis is the continuous representation of
reflecting and occluding objects in the simulated world. For decades it’s been normal for game engines to
support two sorts of 3D geometry, for graphics and physics, but neither of those is well-suited for audio. This
paper explains how the geometric needs of audio differ from those others, and describes techniques hit games
have used to fill the gaps. It presents easily-programmed methods to tailor object-based audio, physics data, pre-
rendered 3D audio soundfields and reverb characteristics to account for occlusion and gaps in the reverberant
environment, including those caused by movements in the simulated world, or the collapse of nearby objects.

1 Introduction
This paper explains how to control the directional
and reverberant properties of object-based audio
sources and soundfields, so that they sound realistic
in the world. It draws upon the author’s experience
making mass-market console and PC games, and
insights from his forthcoming book Beep to Boom,
part of the AES presents... series from Focal Press.

2 Graphics Geometry
There are two categories of geometric object in an
interactive 3D world: mobile objects, like animals
and vehicles, move around, while static objects are
buildings or fixed parts of the terrain. Both types are
authored in 3D graphics packages like Maya or 3D
Studio Max, and imported into a game in two parts –
as a skeletal mesh of connected triangles which
describe the outline of the object, and as texture
maps which cover the facets, superimposing colour
images and surface details which improve lighting
and smooth out the polygonal edges.

Audio can ignore the detail in these maps, needing
only a representation of the reflective properties of

each triangular facet to model acoustic reflections
and occlusion. But there are far more triangles in a
graphical object than needed for audio purposes. On
current console hardware the typical budget for a
single player-character is about 100,000 triangles;
racing games use around 250,000 polygons for each
car, and the total number of facets in a scene,
rendered 60 times a second, may exceed ten million,
including informational overlays, shadows, particles
and similar decorations. [1]

Such high-resolution meshes deliver finely-detailed
close-up graphics, using massively parallel
rendering hardware, but they’re gross overkill for
audio. The computational expense of working out
the interaction of each sound source and every
potentially-reflecting graphical facet far exceeds the
real-time capability of PCs and consoles.

3 Physics Geometry
Similar discrepancies of need apply to detecting
collisions between mobiles, or between mobile and
static objects. Rigid body physics systems use
simplified object outline representations, just enough
to stop objects intercepting or overlapping one

 Goodwin Interactive Audio Geometry

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019
Page 2 of 9

another, and to determine which pairs are touching
and the direction and intensity of their collision.
Many visible objects are ignored, providing they are
or can be nudged within the bounds of another,
usually larger one. Collapses are handled by
swapping entire meshes, usually under cover of dust.

Audio runtimes take advantage of this information to
play contact sounds. A collision reports the
‘materials’ and a pair of sounds is triggered – for
instance when a bike hits a post, wood and metal
contact samples are played from the point of
interception, with assets and volumes tailored
according to the collision force and angle of
incidence. If the angle is obtuse, a looping ‘scrape’
sound may be chosen and updated in pitch and
volume while the contact continues.

With care, physics geometry may be used to model
audio occlusion between game mobiles. In racing
games, other cars reflect the sound of your own as
they try to pass. Codemasters’ BAFTA-winning and
multi-million selling RaceDriver Grid [2] game
models this dynamically. The game audio system
sends out a bundle of eight rays – two vertical, up
and down, and six in a plane around the player – to
detect which objects, static or mobile, are closest,
and their direction. The top vertical trace is dubbed
the ‘unicorn ray’ as it is tilted in the direction of
travel to sense oncoming objects, such as bridges
and gantries, sooner than might otherwise happen.

Figure 1 - Ray-tracing dynamic reflections

Even eight rays are computationally expensive. The
length of the rays is limited, to save processing time
by allowing the broad phase of the collision handler
to sift out distant objects, and the rays are submitted
together as a bundle to facilitate optimisations – it’s
quicker to handle a batch of rays from a common
source than to process each ray individually.

An even more critical performance boost comes by
not waiting for the results. Ray-tracing is performed
outside the main update thread of the game, by
separate threads which run asynchronously, taking
advantage of specialist co-processors or multiple
processor cores.

Even if the contact results arrive a few milliseconds
late, that’s soon enough to select and play suitable
sounds without the player noticing the lag; such
relatively low-priority queries help to balance the
processing load and maintain a steady frame-rate for
everything else. If there’s time to spare, the results
may arrive promptly, but if the system is fully-
loaded this additional audio work may be bumped
off to the next frame update, smoothing out the spike
in demand without delaying graphics or the direct-
path spatialisation of moving sound sources.

It’s practical to use ray-tracing for the main player
object in modern games, but unless you have a very
small world, super-fast processors or little else going
on, it remains unacceptably slow to cast rays from
every source object to every listener, every frame,
just to find out what might be in the way.

Other limitations of using collision geometry for
sound vary depending upon the type of game. A
surface might obstruct sound, but not bullets, so it
will lack collision data in a shooting game, to
improve speed. Race-track designers don’t mark up
every trackside object, but only the ones which are
likely to get in the way of cars or large cast-off bits
like tyres and bumpers.

An Armco crash barrier less than a metre tall will
stop a car, yet it allows sounds to pass above and
below. Markup adequate for physics might make
this an unrealistically solid obstacle to audio.
Objects further from the road still ought to reflect

 Goodwin Interactive Audio Geometry

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019
Page 3 of 9

sounds, but usually won’t have collision physics
because it’s expensive and not needed for anything
except audio. Some collidable objects, like fence-
posts or wire mesh, might hardly impede audio. We
don’t expect to hear reflections from those, although
they’re physical obstructions. Conversely, sound
waves propagate around corners, so even if a path is
blocked to light some audio should leak through.

The reflectivity of a surface affects audio – a grassy
knoll reflects less than a glassy shopfront – but non-
audio designers are usually satisfied just to know if
there’s an obstruction. Marking up and checking the
correct surface properties becomes a big burden for
the audio team. Even if the physics, graphics or level
design teams are given a way to tag obstructions
with their audio properties, they may lack the skill or
the will to take on this unfamiliar responsibility.

Two control values are needed – one expressing the
reflectivity as a proportion, and another controlling
the timbre of reflections, perhaps moderated by the
angle of incidence. This may be an index into a table
of materials and appropriate filter presets, or a direct
tone control setting attenuation at a certain
frequency. The indirect table approach is preferred
because it allows each surface type to have arbitrary
properties, such as a frequency response curve, and
makes it easy to tweak all surfaces of a given type
without selecting them individually. Often there’s an
existing materials database which can be used to
select suitable ‘wood’ or ‘metal’ samples, and
extended to include audio reflectivity.

It’s one thing including support for audio properties,
but quite another to get the visual artists and level
designers to use it. It’s often left set to the default, or
whatever the previous object required. It’s common
for such mistakes to go un-noticed until the object is
in a busy simulation, and then hard to work out
exactly what to fix, assuming someone notices the
problem. Compared with sliding through a tree or
falling through the floor, audio reflections are a
minor concern. Even though the correct handling of
occlusion and reverberation is as important to sound
as correct shadows and shading are to graphics, it’s
less immediately obvious when it goes wrong.

4 Audio Geometry
Ray-tracing is essential for mobile interactions, but
neither graphics nor collision meshes give all the
information we need for realistic volumetric audio.

Early attempts at side reflections were laboriously
implemented in Colin MacRae Rally 2004 and 2005
games, using an undocumented feature of the
OpenAL Audio API to implement directional
reverberation. [3,4] Later Codemasters games adapted
this technique for Microsoft’s Xaudio and Sony’s
Multistream console audio systems, and Blue
Ripple’s cross-platform PC/mobile Rapture3D. [16]

Creative Labs’ ‘Environmental Audio Extensions’
for OpenAL and DirectSound3D implemented up to
four high-quality synthetic reverbs. Their additional
‘direction’ vector, also implemented in Rapture3D
[16], neatly controls the spatial distribution of
reverberation around the listener. If the vector has a
magnitude of zero, the default, reverb is omni-
directional. The maximum magnitude is 1, which
directs all reverb to come from the specified
direction. The following statement, expressed in the
C language customarily used for audio systems
programming, computes the corresponding
magnitude for an angle a expressed in radians:

directionalMagnitude = (2*sinf(0.5*a))/a;

For example, the vector (-0.637, 0, 0) places the
reflections over a 180˚ semicircle to the left of the
listener, (+0.637, 0, 0) picks the opposite side; 0.90
(PI/2 radians) gives a 90˚ spread wherever you wish.

This sounded good, and the side-reflection technique
has since been adopted in other racing games, but
created a great deal of work for the designer, Ben
McCullough. To avoid the need for real-time ray-
tracing, which would have been prohibitively slow
in 2004, Ben spent months creating markup text files
indicating the most appropriate I3DL2 [5] reverb
preset to select each side of each ‘cats-eye’ marker
distributed at short intervals for hundreds of miles
along the 88 point-to-point rally courses included in
the game. [3]

 Goodwin Interactive Audio Geometry

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019
Page 4 of 9

Codemasters’ later Formula 1 racing games use a
spatial arrangement of ‘reflection lines’ to modulate
the timing and timbre of tapped delays applied to the
output of granularly-synthesised engine sounds. [3]
Such lines can be computed at runtime, or earlier.
Tom Zuddock’s article Virtual Audio Through Ray
Tracing describes a simple approach to prescanning
a room’s geometry to work out reflection sources
and delays [6] and Dave Malham’s Reflector project
seeks and applies first reflections on the fly. [7]

A more general solution is to add a third class of
geometry, in the form of ‘sound area meshes’, to fill
the gaps – or leave them open if they’re porous to
audio! A mesh is a group of spatially-distributed
control points with properties which can be
interpolated for any position therein.

An effective implementation of this concept appears
in the Saracen 2 world editor and game engine,
implemented by Rob Baker at Attention to Detail
Ltd, for games like Lego Drome Racers. [8] Rob took
a system originally intended for lighting and adapted
it to model both the occlusion of widespread sounds
like alarms, and the distribution and tone of
reverberations.

The same C++ codebase supported two types of
audio mesh, as well as lighting effects. Meshes
could just as well be used for any volumetric
parametric control, e.g. occlusion. Sound Area
Meshes determine where particular sounds may be
heard, while Effect Area Meshes control I3DL2 [5]
reverb parameters, smoothly morphing between
control values as the listener moved within and

Figure 2 - Alarm Sound Area Mesh

 Goodwin Interactive Audio Geometry

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019
Page 5 of 9

between the meshes. I3DL2 reverb controls are
exposed in many game APIs including CryEngine,
FMOD, Wwise, Xaudio, Unity and Unreal Engine 4.

Both these types of mesh are designed into the
environment using a special PC-hosted version of
the game which incorporated a ‘world editor’ that
allowed 3D objects to be added and moved around.

Meshes are visualised as semi-transparent
volumetric overlays, so they can be seen in context.
Saracen 2 used a preset alpha-blend, but the degree
of transparency may vary to indicate the intensity of
sound or reverberation, tailing off at the edges.

Figure 2 shows a mesh placed in a courtyard, used
both to trigger and control the volume of an alarm
sound played therein. The menu overlay shows the
mesh properties, such as its location, visualisation
and which sound sample or stream to play.

Each corner of the mesh had properties associated
with it – for a playing sound it could be as simple as
the required volume at that point, whereas for reverb
it might set early and late reflection levels or any of
the other I3DL2 properties – with the proviso that
not all of those could be changed at runtime without
audible glitches. Overlapping cross-fades were
sometimes needed to hide these.

At runtime the game calculates which triangle of the
mesh the listener is inside and interpolates between
those properties to get a representative set for that
position. Figure 3 outlines the process of
interpolation in such a triangle; distances are in grey,
vertex weights and interpolated values are in black.

The simplest mesh has one full-on point in the
middle and a ring of at least three points round the
outside with controls set to mute the sound or effect.

As the listener enters the ring and moves towards the
middle, sound parameters like volume, timbre and
reverberation are adjusted accordingly. These
parameters should be expressed in
psychoacoustically weighted units, such as
logarithmic attenuations, so that the interpolation is
perceptually as well as arithmetically linear.

Figure 3 - 2D Audio property interpolation

5 Control Points
At first this does little more than a sphere set at Max
Distance (by convention, the range at which a sound
becomes inaudible) around a source, albeit with a
potentially irregular outline. But as control points
are added, meshes become far more capable. An
intermediate ring of points allows the inner and
outer volume curves to vary.

Additional points approximate any curve, allowing
different shapes which depend upon location as well
as distance and aesthetic factors. For instance,
ambient sound could fade off at the mouth of a cave,
or a sheltered area could have a quiet point within it,
and varying levels around that corresponding to the
occlusion caused by static geometry.

If that shelter is damaged, the mesh can be edited or
replaced in the same way that a pristine building
might be replaced with a shattered one by swapping
physics and graphics geometry, usually under the
cover of a cloud of smoke – or the audible
equivalent, a big explosion. Editing is more
powerful, just like deformable geometry, but a lot
more expensive at runtime, which is why both
techniques are commonly used.

Baker adds, “Although the meshes were designed in
3D so the level designer could position them around

 Goodwin Interactive Audio Geometry

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019
Page 6 of 9

the required objects for reference, the actual
processing was all done in 2D with the vertical
component ignored. Of course, this greatly
simplified the processing as we were only dealing
with 2D triangles rather than potentially complex
3D volumes which would have been a nightmare to
author at a design level anyway. Because our race
tracks were all essentially just 2D with no vertically
overlapping areas this was never really a design
limitation.” [9]

The interpolation technique can readily be extended
to 3D by locating the four nearest control points to
the listener, rather than the 3D triangle, either by
traversing the mesh or simply scanning through all
the vertices to find the three which define a 2D plane
or four for a 3D volume – not forgetting to check for
the special cases when they may all be on a line or in
a plane.

This cache-friendly brute-force search is amenable
to optimisation as there is no need for a full sort of
all the points, nor to use square roots to determine
the actual distances by Pythagoras’s theorem –
comparing the sums of the squares, computed with
fast SIMD (Single Instruction, Multiple Data) vector
arithmetic, is enough to find the closest.

Disjoint clusters of points can be grouped within
bounding spheres, as part of the offline data-
preparation process, providing a quick way to ignore
irrelevant distant clusters with a single runtime test.

Meshes are a general way to describe the properties
of the space between objects, acoustic or otherwise.
Irregular meshes can be applied to reverberation,
creating echoic pockets in an otherwise open world.
Meshes can also be used to filter or suppress sounds
from outside an arbitrary volume.

Mesh control points also embody directional
information. If control points to the left of the
listener have higher volume than those to the right,
the sound can be panned left proportionately. Extend
this approach to surround by setting a suitable 2D or
3D panning vector. As the sound is distributed
around the mesh, Doppler pitch shifts should be
disabled for this sound object.

Hand-authoring of audio meshes is a big job,
especially as non-audio designers are prone to move
objects around at any point in development of a
game, even at late stages, to deliberately reduce
visibility to keep a consistent frame-rate. Testing
and re-authoring audio metadata after such changes
is costly and error-prone. But just as ‘static lighting’
offline processes can rebuild light and shadow maps
automatically, similar systems can regenerate audio
occlusion meshes before the game is tested.

It doesn’t matter that they’re using fine-grained
graphics geometry, or some hybrid of graphics,
physics and custom data, because the offline process
doesn’t need to run in real time. Indeed, it can be
distributed across several build systems, which
might be doing similar rework for the physics
system, such as deriving simpler bounding zones for
graphics meshes. Most of the code you need may
already exist.

It’s wise for such processes to generate the same
data as manual markup, so the output can be
tweaked by hand later if necessary. Write a simple
system that catches the bulk of the common cases
and can be tweaked later just where it matters most.
That’s more practical than to rely on an automatic
one which aims to detect and handle all the possible
edge-cases and leaves no escape mechanism.

6 Cheap Shapes
If you can’t afford full-blown audio geometry, or
don’t always need its flexibility, you may get by
with an arrangement of simpler shapes, such as
spheres, boxes and capsules, to control environ-
mental audio. Colin McRae DiRT uses trigger boxes
to time its context-driven speech, with adjustments
for the player’s speed. [15] Grand Theft Auto V uses
almost a thousand spheres and arbitrarily-shaped
boxes to delimit its ambience zones. [10]

The density of this sort of mark-up is increasing in
the quest for greater immersion and realism, and as
VR and AR experiences raise expectations. Its
predecessor Grand Theft Auto 4 incorporates only 87
such zones, marked up as axis-aligned boxes. These
are quicker to process at run-time because there’s no

 Goodwin Interactive Audio Geometry

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019
Page 7 of 9

need to rotate them, but less flexible and harder to
author.

Spheres never need rotating, which helps to explain
why pool and snooker games were amongst the first
to go into 3D. Around 200 trigger spheres control
the crowds, tunnels and local ambiences in the Colin
McRae Rally mobile game. [11]

Figure 4 - Ambience Zones in Grand Theft Auto V [10]

7 Capturing Reverberation
Stuart Ross, sound designer on the BAFTA audio
award-winning Crackdown and Grand Theft Auto:
Vice City games, observes that reverb is to sound as
lighting is to graphics. [3] It’s thus very subjective,
combinatorial, and influenced by many aspects of
the scene. It greatly enhances a sense of immersion.

 Rockstar North’s Grand Theft Auto V uses three
internal reverb buses for spatialisation, each four
channels wide, preset for small, medium and large
reverberant spaces. Audio objects in this massive
‘open world’ game can be routed to any of those, in

varying proportions appropriate to the environment
and distance from the listener.

Meshes can be used to control synthetic reverb depth
and timbre but new techniques allow more realistic
reverb, providing they also support customisation.
Ambisonics has revolutionised spatial audio by
allowing periphonic soundfields to be authored and
orientated around the listener in games and
especially virtual and extended reality titles. [17]

A public database of Ambisonically-captured 3D
impulse responses has been created. As well as
traditional hall and church echoes, the OpenAirLib
repository includes outdoor captures from a ravine,
tunnel portals, and a Finnish forest in summertime
and snow, intended for interactive media use. Figure
5 illustrates the setup for one of these recordings. [13]

Figure 5 - AHRC-funded Ambisonic impulse response
capture in Koni National Park for OpenAirLib.net [13]

 Goodwin Interactive Audio Geometry

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019
Page 8 of 9

The characteristic sound of a vehicle interior can be
applied to an Ambisonic mix by convolving it with
the 3D impulse response. The techniques to capture
this are explored in a paper presented at SMCC. [12]

This is adequate – indeed transformative compared
with conventional synthetic reverb. It takes good
advantage of the fixed position of the driver in the
cockpit. But it’s still not as interactive as we’d like.
Panel or window damage affects the directional
characteristics and adds additional sound which may
dominate the soundfield later in an event. Captured
impulses can be tailored for each such configuration.

8 Directional Soundfield Manipulation
But what if we want to suppress sounds from a
specific direction? This is useful if a large or nearby
mobile object partially obscures sound from some
directions, or when a gap in surrounding geometry
means less reverberation in that direction. Such
dynamic changes maintain listener interest and make
the simulation more realistic and informative about
the immediate spatial environment.

The following C statements sculpt the directional
characteristics of a first-order ambience or impulse
response. fW, fX, fY and fZ are the B-Format
components, where fW is the omnidirectional part,
and dir is a unit vector (length 1) pointing in the
direction from which you wish to suppress sounds.
These axes must be oriented in the conventional
mathematical sequence – unlike video graphics
engines, Ambisonics follows mathematical
convention with a vertical Z axis.

Finally we need a ‘dimming factor’ d, where 0
makes no difference and 1 suppresses as much as
possible of the signal in the chosen direction vector
dir. Again in the usual C programming language,
the original signal in the dimming direction, s, is

s = 0.5 * (1.414 * fW + dir.x * fX
  + dir.y * fY + dir.z * fZ);

This can be eliminated from the original soundfield
by adjusting the component weights as follows:

 float sd = s * d;
 fW –= 0.707 * sd;
 fX –= dir.x * sd;
 fY –= dir.y * sd;
 fZ –= dir.z * sd;

It's not perfect, because of the limited spatial acuity
of first-order Ambisonics. This representation is not
ideal for direct sound sources, but given the way
sounds propagate indirectly as well as directly it’s a
quite realistic volume-only manipulation for varying
ambient and reverberant soundfields. It’s very cheap
to implement, since it uses the gain adjustments
associated with decoding of the existing soundfield:
it needs just ten extra multiplications, three additions
and four subtractions per four-channel update frame.

Higher-order systems can sift out and adjust more
specific parts of the mix, including those above and
below any chosen plane as well as directional parts.

This manipulation can be applied to recorded or
synthesised Periphonic reverb, either by directly
convolving Ambisonic impulse responses onto
corresponding components of a mix of the same or
higher order, or using the AmbiFreeverb 2 [14]
parametric 3D reverb, which offers control over
scattering as well as spatial distribution.

This process, along with pre-delay, filtering and the
insertion of computed early reflections, greatly
increases the flexibility of impulse response reverb,
making it more suitable for interactive applications.
The process’s low fixed overhead and scalability,
from short mono delays via decorrelated W to 2D or
3D convolution, also commends its use on portable
devices, which may vary in DSP power by a factor
of 30 times across one platform like iOS or Android.

9 Conclusions
This paper has identified the key geometric data and
runtime subsystems in modern computer games and
considered their relevance to the dynamic
representation of audible reflections and occlusion.
It has shown that although existing data and tools are
not ideally suited for audio processing they can be
harnessed for immersive sound synthesis by a

 Goodwin Interactive Audio Geometry

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019
Page 9 of 9

pragmatically-tailored mixture of offline data
refactoring, real-time queries and dynamic
reconfiguration to meet the specialised needs of
high-performance games, VR and similar interactive
simulations in readily-scalable ways.

References
[1] S. N. Goodwin, Beep to Boom: The

Development of Advanced Runtime Sound
Systems for Games and Extended Reality,
Routledge 2019; Chapter 22; ISBN 978
1138543904, www.simon.mooli.org.uk/b2b
[Checked 2019-1-9]

[2] Codemasters Software Company, RaceDriver
Grid, 2008 www.mobygames.com/game/grid
[Checked 2018-11-9]

[3] S. N. Goodwin, Beep to Boom: The
Development of Advanced Runtime Sound
Systems for Games and Extended Reality,
Routledge 2019; Chapter 21; ISBN 978
1138543904, www.simon.mooli.org.uk/b2b
[Checked 2019-1-9]

[4] OpenAL application programming interface:
www.openal.org [Checked 2018-11-9]

[5] Interactive 3D audio rendering guidelines,
Level 2.0 (I3DL2) specification:
www.iasig.org/wg/closed/icwg/21feb97.pdf
[Checked 2018-10-29]

[6] T. Zuddock, “Virtual Audio Through Ray
Tracing”, Dr. Dobb’s Journal, ISSN 1044-
789X, December 1996

[7] D. Malham, The Ambisonic Reflector,
sourceforge.net/projects/thereflector/
[Checked 2018-11-2]

[8] Lego Interactive, Drome Racers, 2002-2003
www.mobygames.com/game/drome-racers
[Checked 2018-11-9]

[9] R. Baker, Private correspondence with the
author, November 2017

[10] A. MacDonald, The Sound of Grand Theft
Auto V; Alistair, Game Developers
Conference, San Francisco, 2014
www.gdcvault.com/play/1020587/The-
Sound-of-Grand-Theft
[Checked 2018-10-29]

[11] Codemasters Software Company, Colin
McRae Rally games: en.wikipedia.org/wiki
/Colin_McRae_Rally [Checked 2019-1-9]

[12] S. Shelley, D. Murphy, S. N. Goodwin,

“Impulse Response Estimation for the
Auralisation of Vehicle Engine Sounds using
Dual Channel FFT Analysis”; Proceedings of
the Sound and Music Computing Conference
2013, Logos Verlag Berlin, ISBN 978
3832534721 pure.york.ac.uk/portal/services/
downloadRegister/25538798/Impulse_Respo
nse_Estimation_for_the_Auralisation_of_Ve
hicle_Engine_Sounds_using_Dual_Channel_
FFT_Analysis. pdf [Checked 2018-11-09]

[13] OpenAirLib impulse response library
www.openairlib.net [Checked 2018-11-09]

[14] B. Wiggins, M. Dring; AmbiFreeVerb 2,
“Development of a 3D Ambisonic Reverb
with Spatial Warping and Variable
Scattering”; AES International Conference on
Sound Field Control (July 2014)
www.aes.org/e-lib/browse.cfm?elib=18307
[Checked 2018-11-9]

[15] Codemasters Software Company, Colin
McRae DiRT, 2007, [Checked 2018-11-9]
www.mobygames.com/game/dirt

[16] Blue Ripple Sound, Rapture3D for Microsoft
Windows, Apple MacOS, iOS and Google
Android, www.blueripplesound.com/products
/rapture3d-universal-sdk [Checked 2019-1-1]

[17] M. A. Gerzon, “Periphony: With-Height
Sound Reproduction”; JAES, ISSN 1549-
4950, Vol. 21 Number 1, Feb 1973, pages 2–
10, www.aes.org/e-lib/browse.cfm?elib=2012
[Checked 2018-11-9]

