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ABSTRACT 

One of the tough but rewarding challenges of interactive audio synthesis is the continuous representation of 
reflecting and occluding objects in the simulated world. For decades it’s been normal for game engines to 
support two sorts of 3D geometry, for graphics and physics, but neither of those is well-suited for audio. This 
paper explains how the geometric needs of audio differ from those others, and describes techniques hit games 
have used to fill the gaps. It presents easily-programmed methods to tailor object-based audio, physics data, pre- 
rendered 3D audio soundfields and reverb characteristics to account for occlusion and gaps in the reverberant 
environment, including those caused by movements in the simulated world, or the collapse of nearby objects.  

1 Introduction 
This paper explains how to control the directional 
and reverberant properties of object-based audio 
sources and soundfields, so that they sound realistic 
in the world. It draws upon the author’s experience 
making mass-market console and PC games, and 
insights from his forthcoming book Beep to Boom, 
part of the AES presents... series from Focal Press.  

2 Graphics Geometry  
There are two categories of geometric object in an 
interactive 3D world: mobile objects, like animals 
and vehicles, move around, while static objects are 
buildings or fixed parts of the terrain. Both types are 
authored in 3D graphics packages like Maya or 3D 
Studio Max, and imported into a game in two parts – 
as a skeletal mesh of connected triangles which 
describe the outline of the object, and as texture 
maps which cover the facets, superimposing colour 
images and surface details which improve lighting 
and smooth out the polygonal edges.  
 
Audio can ignore the detail in these maps, needing 
only  a representation of  the reflective  properties of  

 
each triangular facet to model acoustic reflections 
and occlusion. But there are far more triangles in a 
graphical object than needed for audio purposes. On 
current console hardware the typical budget for a 
single player-character is about 100,000 triangles; 
racing games use around 250,000 polygons for each 
car, and the total number of facets in a scene, 
rendered 60 times a second, may exceed ten million, 
including informational overlays, shadows, particles 
and similar decorations. [1]  
 
Such high-resolution meshes deliver finely-detailed 
close-up graphics, using massively parallel 
rendering hardware, but they’re gross overkill for 
audio. The computational expense of working out 
the interaction of each sound source and every 
potentially-reflecting graphical facet far exceeds the 
real-time capability of PCs and consoles.  

3 Physics Geometry  
Similar discrepancies of need apply to detecting 
collisions between mobiles, or between mobile and 
static objects. Rigid body physics systems use 
simplified object outline representations, just enough 
to stop objects intercepting or overlapping one 
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another, and to determine which pairs are touching 
and the direction and intensity of their collision. 
Many visible objects are ignored, providing they are 
or can be nudged within the bounds of another, 
usually larger one. Collapses are handled by 
swapping entire meshes, usually under cover of dust. 
  
Audio runtimes take advantage of this information to 
play contact sounds. A collision reports the 
‘materials’ and a pair of sounds is triggered – for 
instance when a bike hits a post, wood and metal 
contact samples are played from the point of 
interception, with assets and volumes tailored 
according to the collision force and angle of 
incidence. If the angle is obtuse, a looping ‘scrape’ 
sound may be chosen and updated in pitch and 
volume while the contact continues.  
 
With care, physics geometry may be used to model 
audio occlusion between game mobiles. In racing 
games, other cars reflect the sound of your own as 
they try to pass. Codemasters’ BAFTA-winning and 
multi-million selling RaceDriver Grid [2] game 
models this dynamically. The game audio system 
sends out a bundle of eight rays – two vertical, up 
and down, and six in a plane around the player – to 
detect which objects, static or mobile, are closest, 
and their direction. The top vertical trace is dubbed 
the ‘unicorn ray’ as it is tilted in the direction of 
travel to sense oncoming objects, such as bridges 
and gantries, sooner than might otherwise happen.  
 
 

 
Figure 1 - Ray-tracing dynamic reflections 

 

Even eight rays are computationally expensive. The 
length of the rays is limited, to save processing time 
by allowing the broad phase of the collision handler 
to sift out distant objects, and the rays are submitted 
together as a bundle to facilitate optimisations – it’s 
quicker to handle a batch of rays from a common 
source than to process each ray individually. 
 
An even more critical performance boost comes by 
not waiting for the results. Ray-tracing is performed 
outside the main update thread of the game, by 
separate threads which run asynchronously, taking 
advantage of specialist co-processors or multiple 
processor cores.  
 
Even if the contact results arrive a few milliseconds 
late, that’s soon enough to select and play suitable 
sounds without the player noticing the lag; such 
relatively low-priority queries help to balance the 
processing load and maintain a steady frame-rate for 
everything else. If there’s time to spare, the results 
may arrive promptly, but if the system is fully- 
loaded this additional audio work may be bumped 
off to the next frame update, smoothing out the spike 
in demand without delaying graphics or the direct-
path spatialisation of moving sound sources.  
 
It’s practical to use ray-tracing for the main player 
object in modern games, but unless you have a very 
small world, super-fast processors or little else going 
on, it remains unacceptably slow to cast rays from 
every source object to every listener, every frame, 
just to find out what might be in the way.  
 
Other limitations of using collision geometry for 
sound vary depending upon the type of game. A 
surface might obstruct sound, but not bullets, so it 
will lack collision data in a shooting game, to 
improve speed. Race-track designers don’t mark up 
every trackside object, but only the ones which are 
likely to get in the way of cars or large cast-off bits 
like tyres and bumpers.  
 
An Armco crash barrier less than a metre tall will 
stop a car, yet it allows sounds to pass above and 
below. Markup adequate for physics might make 
this an unrealistically solid obstacle to audio. 
Objects further from the road still ought to reflect 
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sounds, but usually won’t have collision physics 
because it’s expensive and not needed for anything 
except audio. Some collidable objects, like fence-
posts or wire mesh, might hardly impede audio. We 
don’t expect to hear reflections from those, although 
they’re physical obstructions. Conversely, sound 
waves propagate around corners, so even if a path is 
blocked to light some audio should leak through.  
 
The reflectivity of a surface affects audio – a grassy 
knoll reflects less than a glassy shopfront – but non- 
audio designers are usually satisfied just to know if 
there’s an obstruction. Marking up and checking the 
correct surface properties becomes a big burden for 
the audio team. Even if the physics, graphics or level 
design teams are given a way to tag obstructions 
with their audio properties, they may lack the skill or 
the will to take on this unfamiliar responsibility.  
 
Two control values are needed – one expressing the 
reflectivity as a proportion, and another controlling 
the timbre of reflections, perhaps moderated by the 
angle of incidence. This may be an index into a table 
of materials and appropriate filter presets, or a direct 
tone control setting attenuation at a certain 
frequency. The indirect table approach is preferred 
because it allows each surface type to have arbitrary 
properties, such as a frequency response curve, and 
makes it easy to tweak all surfaces of a given type 
without selecting them individually. Often there’s an 
existing materials database which can be used to 
select suitable ‘wood’ or ‘metal’ samples, and 
extended to include audio reflectivity.  
 
It’s one thing including support for audio properties, 
but quite another to get the visual artists and level 
designers to use it. It’s often left set to the default, or 
whatever the previous object required. It’s common 
for such mistakes to go un-noticed until the object is 
in a busy simulation, and then hard to work out 
exactly what to fix, assuming someone notices the 
problem. Compared with sliding through a tree or 
falling through the floor, audio reflections are a 
minor concern. Even though the correct handling of 
occlusion and reverberation is as important to sound 
as correct shadows and shading are to graphics, it’s 
less immediately obvious when it goes wrong. 

4 Audio Geometry 
Ray-tracing is essential for mobile interactions, but 
neither graphics nor collision meshes give all the 
information we need for realistic volumetric audio. 
 
Early attempts at side reflections were laboriously 
implemented in Colin MacRae Rally 2004 and 2005 
games, using an undocumented feature of the 
OpenAL Audio API to implement directional 
reverberation. [3,4] Later Codemasters games adapted 
this technique for Microsoft’s Xaudio and Sony’s 
Multistream console audio systems, and Blue 
Ripple’s cross-platform PC/mobile Rapture3D. [16] 

Creative Labs’ ‘Environmental Audio Extensions’ 
for OpenAL and DirectSound3D implemented up to 
four high-quality synthetic reverbs. Their additional 
‘direction’ vector, also implemented in Rapture3D 
[16], neatly controls the spatial distribution of 
reverberation around the listener. If the vector has a 
magnitude of zero, the default, reverb is omni- 
directional. The maximum magnitude is 1, which 
directs all reverb to come from the specified 
direction. The following statement, expressed in the 
C language customarily used for audio systems 
programming, computes the corresponding 
magnitude for an angle a expressed in radians:  

directionalMagnitude = (2*sinf(0.5*a))/a;  

For example, the vector (-0.637, 0, 0) places the 
reflections over a 180˚ semicircle to the left of the 
listener, (+0.637, 0, 0) picks the opposite side; 0.90 
(PI/2 radians) gives a 90˚ spread wherever you wish.  

This sounded good, and the side-reflection technique 
has since been adopted in other racing games, but 
created a great deal of work for the designer, Ben 
McCullough. To avoid the need for real-time ray- 
tracing, which would have been prohibitively slow 
in 2004, Ben spent months creating markup text files 
indicating the most appropriate I3DL2 [5] reverb 
preset to select each side of each ‘cats-eye’ marker 
distributed at short intervals for hundreds of miles 
along the 88 point-to-point rally courses included in 
the game. [3]  
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Codemasters’ later Formula 1 racing games use a 
spatial arrangement of ‘reflection lines’ to modulate 
the timing and timbre of tapped delays applied to the 
output of granularly-synthesised engine sounds. [3] 
Such lines can be computed at runtime, or earlier. 
Tom Zuddock’s article Virtual Audio Through Ray 
Tracing describes a simple approach to prescanning 
a room’s geometry to work out reflection sources 
and delays [6] and Dave Malham’s Reflector project 
seeks and applies first reflections on the fly. [7]  

A more general solution is to add a third class of 
geometry, in the form of ‘sound area meshes’, to fill 
the gaps – or leave them open if they’re porous to 
audio! A mesh is a group of spatially-distributed 
control points with properties which can be 
interpolated for any position therein.  

An effective implementation of this concept appears 
in the Saracen 2 world editor and game engine, 
implemented by Rob Baker at Attention to Detail 
Ltd, for games like Lego Drome Racers. [8] Rob took 
a system originally intended for lighting and adapted 
it to model both the occlusion of widespread sounds 
like alarms, and the distribution and tone of 
reverberations.  

The same C++ codebase supported two types of 
audio mesh, as well as lighting effects. Meshes 
could just as well be used for any volumetric 
parametric control, e.g. occlusion. Sound Area 
Meshes determine where particular sounds may be 
heard, while Effect Area Meshes control I3DL2 [5] 
reverb parameters, smoothly morphing between 
control values as the listener moved within and 

Figure 2 - Alarm Sound Area Mesh 
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between the meshes. I3DL2 reverb controls are 
exposed in many game APIs including CryEngine, 
FMOD, Wwise, Xaudio, Unity and Unreal Engine 4.  

Both these types of mesh are designed into the 
environment using a special PC-hosted version of 
the game which incorporated a ‘world editor’ that 
allowed 3D objects to be added and moved around.  

Meshes are visualised as semi-transparent 
volumetric overlays, so they can be seen in context. 
Saracen 2 used a preset alpha-blend, but the degree 
of transparency may vary to indicate the intensity of 
sound or reverberation, tailing off at the edges.  

Figure 2 shows a mesh placed in a courtyard, used 
both to trigger and control the volume of an alarm 
sound played therein. The menu overlay shows the 
mesh properties, such as its location, visualisation 
and which sound sample or stream to play. 

Each corner of the mesh had properties associated 
with it – for a playing sound it could be as simple as 
the required volume at that point, whereas for reverb 
it might set early and late reflection levels or any of 
the other I3DL2 properties – with the proviso that 
not all of those could be changed at runtime without 
audible glitches. Overlapping cross-fades were 
sometimes needed to hide these.  

At runtime the game calculates which triangle of the 
mesh the listener is inside and interpolates between 
those properties to get a representative set for that 
position. Figure 3 outlines the process of 
interpolation in such a triangle; distances are in grey, 
vertex weights and interpolated values are in black.  

The simplest mesh has one full-on point in the 
middle and a ring of at least three points round the 
outside with controls set to mute the sound or effect. 

As the listener enters the ring and moves towards the 
middle, sound parameters like volume, timbre and 
reverberation are adjusted accordingly. These 
parameters should be expressed in 
psychoacoustically weighted units, such as 
logarithmic attenuations, so that the interpolation is 
perceptually as well as arithmetically linear.  

Figure 3 - 2D Audio property interpolation 

5 Control Points 
At first this does little more than a sphere set at Max 
Distance (by convention, the range at which a sound 
becomes inaudible) around a source, albeit with a 
potentially irregular outline. But as control points 
are added, meshes become far more capable. An 
intermediate ring of points allows the inner and 
outer volume curves to vary. 

Additional points approximate any curve, allowing 
different shapes which depend upon location as well 
as distance and aesthetic factors. For instance, 
ambient sound could fade off at the mouth of a cave, 
or a sheltered area could have a quiet point within it, 
and varying levels around that corresponding to the 
occlusion caused by static geometry.  

If that shelter is damaged, the mesh can be edited or 
replaced in the same way that a pristine building 
might be replaced with a shattered one by swapping 
physics and graphics geometry, usually under the 
cover of a cloud of smoke – or the audible 
equivalent, a big explosion. Editing is more 
powerful, just like deformable geometry, but a lot 
more expensive at runtime, which is why both 
techniques are commonly used.  

Baker adds, “Although the meshes were designed in 
3D so the level designer could position them around 
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the required objects for reference, the actual 
processing was all done in 2D with the vertical 
component ignored. Of course, this greatly 
simplified the processing as we were only dealing 
with 2D triangles rather than potentially complex 
3D volumes which would have been a nightmare to 
author at a design level anyway. Because our race 
tracks were all essentially just 2D with no vertically 
overlapping areas this was never really a design 
limitation.” [9]  

The interpolation technique can readily be extended 
to 3D by locating the four nearest control points to 
the listener, rather than the 3D triangle, either by 
traversing the mesh or simply scanning through all 
the vertices to find the three which define a 2D plane 
or four for a 3D volume – not forgetting to check for 
the special cases when they may all be on a line or in 
a plane.  

This cache-friendly brute-force search is amenable 
to optimisation as there is no need for a full sort of 
all the points, nor to use square roots to determine 
the actual distances by Pythagoras’s theorem – 
comparing the sums of the squares, computed with 
fast SIMD (Single Instruction, Multiple Data) vector 
arithmetic, is enough to find the closest.  

Disjoint clusters of points can be grouped within 
bounding spheres, as part of the offline data- 
preparation process, providing a quick way to ignore 
irrelevant distant clusters with a single runtime test.  

Meshes are a general way to describe the properties 
of the space between objects, acoustic or otherwise. 
Irregular meshes can be applied to reverberation, 
creating echoic pockets in an otherwise open world. 
Meshes can also be used to filter or suppress sounds 
from outside an arbitrary volume.  

Mesh control points also embody directional 
information. If control points to the left of the 
listener have higher volume than those to the right, 
the sound can be panned left proportionately. Extend 
this approach to surround by setting a suitable 2D or 
3D panning vector. As the sound is distributed 
around the mesh, Doppler pitch shifts should be 
disabled for this sound object. 

Hand-authoring of audio meshes is a big job, 
especially as non-audio designers are prone to move 
objects around at any point in development of a 
game, even at late stages, to deliberately reduce 
visibility to keep a consistent frame-rate. Testing 
and re-authoring audio metadata after such changes 
is costly and error-prone. But just as ‘static lighting’ 
offline processes can rebuild light and shadow maps 
automatically, similar systems can regenerate audio 
occlusion meshes before the game is tested.  

It doesn’t matter that they’re using fine-grained 
graphics geometry, or some hybrid of graphics, 
physics and custom data, because the offline process 
doesn’t need to run in real time. Indeed, it can be 
distributed across several build systems, which 
might be doing similar rework for the physics 
system, such as deriving simpler bounding zones for 
graphics meshes. Most of the code you need may 
already exist.  

It’s wise for such processes to generate the same 
data as manual markup, so the output can be 
tweaked by hand later if necessary. Write a simple 
system that catches the bulk of the common cases 
and can be tweaked later just where it matters most. 
That’s more practical than to rely on an automatic 
one which aims to detect and handle all the possible 
edge-cases and leaves no escape mechanism.  

6 Cheap Shapes 
If you can’t afford full-blown audio geometry, or 
don’t always need its flexibility, you may get by 
with an arrangement of simpler shapes, such as 
spheres, boxes and capsules, to control environ- 
mental audio. Colin McRae DiRT uses trigger boxes 
to time its context-driven speech, with adjustments 
for the player’s speed. [15] Grand Theft Auto V uses 
almost a thousand spheres and arbitrarily-shaped 
boxes to delimit its ambience zones. [10]  

The density of this sort of mark-up is increasing in 
the quest for greater immersion and realism, and as 
VR and AR experiences raise expectations. Its 
predecessor Grand Theft Auto 4 incorporates only 87 
such zones, marked up as axis-aligned boxes. These 
are quicker to process at run-time because there’s no 
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need to rotate them, but less flexible and harder to 
author.  

Spheres never need rotating, which helps to explain 
why pool and snooker games were amongst the first 
to go into 3D. Around 200 trigger spheres control 
the crowds, tunnels and local ambiences in the Colin 
McRae Rally mobile game. [11]  

Figure 4 - Ambience Zones in Grand Theft Auto V [10] 

7 Capturing Reverberation  
Stuart Ross, sound designer on the BAFTA audio 
award-winning Crackdown and Grand Theft Auto: 
Vice City games, observes that reverb is to sound as 
lighting is to graphics. [3] It’s thus very subjective, 
combinatorial, and influenced by many aspects of 
the scene. It greatly enhances a sense of immersion. 

 Rockstar North’s Grand Theft Auto V uses three 
internal reverb buses for spatialisation, each four 
channels wide, preset for small, medium and large 
reverberant spaces. Audio objects in this massive 
‘open world’ game can be routed to any of those, in 

varying proportions appropriate to the environment 
and distance from the listener.  

Meshes can be used to control synthetic reverb depth 
and timbre but new techniques allow more realistic 
reverb, providing they also support customisation. 
Ambisonics has revolutionised spatial audio by 
allowing periphonic soundfields to be authored and 
orientated around the listener in games and 
especially virtual and extended reality titles. [17]  

A public database of Ambisonically-captured 3D 
impulse responses has been created. As well as 
traditional hall and church echoes, the OpenAirLib 
repository includes outdoor captures from a ravine, 
tunnel portals, and a Finnish forest in summertime 
and snow, intended for interactive media use. Figure 
5 illustrates the setup for one of these recordings. [13]  

Figure 5 - AHRC-funded Ambisonic impulse response 
capture in Koni National Park for OpenAirLib.net [13] 

 



  Goodwin    Interactive Audio Geometry 

 

AES Conference on Immersive and Interactive Audio, York, UK, March 27–29, 2019  
Page 8 of 9 

The characteristic sound of a vehicle interior can be 
applied to an Ambisonic mix by convolving it with 
the 3D impulse response. The techniques to capture 
this are explored in a paper presented at SMCC. [12] 

This is adequate – indeed transformative compared 
with conventional synthetic reverb. It takes good 
advantage of the fixed position of the driver in the 
cockpit. But it’s still not as interactive as we’d like. 
Panel or window damage affects the directional 
characteristics and adds additional sound which may 
dominate the soundfield later in an event. Captured 
impulses can be tailored for each such configuration. 

8 Directional Soundfield Manipulation  
But what if we want to suppress sounds from a 
specific direction? This is useful if a large or nearby 
mobile object partially obscures sound from some 
directions, or when a gap in surrounding geometry 
means less reverberation in that direction. Such 
dynamic changes maintain listener interest and make 
the simulation more realistic and informative about 
the immediate spatial environment.  

The following C statements sculpt the directional 
characteristics of a first-order ambience or impulse 
response. fW, fX, fY and fZ are the B-Format 
components, where fW is the omnidirectional part, 
and dir is a unit vector (length 1) pointing in the 
direction from which you wish to suppress sounds. 
These axes must be oriented in the conventional 
mathematical sequence – unlike video graphics 
engines, Ambisonics follows mathematical 
convention with a vertical Z axis.  

Finally we need a ‘dimming factor’ d, where 0 
makes no difference and 1 suppresses as much as 
possible of the signal in the chosen direction vector 
dir. Again in the usual C programming language, 
the original signal in the dimming direction, s, is  

s = 0.5 * (1.414 * fW + dir.x * fX 
          + dir.y * fY + dir.z * fZ);  
 
This can be eliminated from the original soundfield 
by adjusting the component weights as follows:  

  float sd = s * d;  
  fW –= 0.707 * sd;  
  fX –= dir.x * sd;  
  fY –= dir.y * sd;  
  fZ –= dir.z * sd;  
 
It's not perfect, because of the limited spatial acuity 
of first-order Ambisonics. This representation is not 
ideal for direct sound sources, but given the way 
sounds propagate indirectly as well as directly it’s a 
quite realistic volume-only manipulation for varying 
ambient and reverberant soundfields. It’s very cheap 
to implement, since it uses the gain adjustments 
associated with decoding of the existing soundfield: 
it needs just ten extra multiplications, three additions 
and four subtractions per four-channel update frame.  

Higher-order systems can sift out and adjust more 
specific parts of the mix, including those above and 
below any chosen plane as well as directional parts.  

This manipulation can be applied to recorded or 
synthesised Periphonic reverb, either by directly 
convolving Ambisonic impulse responses onto 
corresponding components of a mix of the same or 
higher order, or using the AmbiFreeverb 2 [14] 
parametric 3D reverb, which offers control over 
scattering as well as spatial distribution.  

This process, along with pre-delay, filtering and the 
insertion of computed early reflections, greatly 
increases the flexibility of impulse response reverb, 
making it more suitable for interactive applications. 
The process’s low fixed overhead and scalability, 
from short mono delays via decorrelated W to 2D or 
3D convolution, also commends its use on portable 
devices, which may vary in DSP power by a factor 
of 30 times across one platform like iOS or Android.  

9 Conclusions 
This paper has identified the key geometric data and 
runtime subsystems in modern computer games and 
considered their relevance to the dynamic 
representation of audible reflections and occlusion. 
It has shown that although existing data and tools are 
not ideally suited for audio processing they can be 
harnessed for immersive sound synthesis by a 
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pragmatically-tailored mixture of offline data 
refactoring, real-time queries and dynamic 
reconfiguration to meet the specialised needs of 
high-performance games, VR and similar interactive 
simulations in readily-scalable ways. 
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